Las supernovas se clasifican en tres tipos atendiendo a sus características y a los diferentes mecanismos que desencadenan las explosiones. Las del llamado tipo Ia, que ha jugado un papel determinante en el descubrimiento de la energía oscura del universo al ayudar a los cosmólogos medir distancias en el universo, se producen cuando una estrella enana blanca de un sistema de dos astros ha devorado suficiente materia de su compañero para alcanzar la masa crítica y estalla, recuerda el especialista Stephen Smarti en Nature. Otro tipo son las de colapso de núcleo, estrellas muy masivas, mucho más que el Sol, que han consumido todo su combustible de las reacciones nucleares que las hacen brillar y colapsan; entonces explotan lanzando al espacio ingentes cantidades de materia y radiación. El tercer tipo son las supernovas superluminosas, 10 y 100 veces más brillantes que los dos tipos anteriores, respectivamente. A estas pertenecen las muy lejanas SN2213-1745 y SN1000+0216, que han descubierto Jeff Cooke (Universidad Swinburne de Tecnología, en Australia) y sus colegas. La primera estallo 3.000 millones de años después del Big Bang, y la segunda, la más lejana, sólo 1.500 millones de años tras la explosión inicial.
Los científicos no tiene claro el mecanismo que desencadena la explosión de las superluminosas, pero teoría si que tienen, y las llaman supernovas de pares electrón-positrón, es decir, de materia-antimateria (el positrón es la antipartícula del electrón). La idea es que en estrellas realmente supermasivas (entre 100 y 300 masas solares), sus núcleos llegan a alcanzan temperaturas tan altas que se crean pares electrón-positrón. Entonces el astro se contrae, se desestabiliza y se desencadena una masiva explosión termonuclear de manera que el calor generado en el proceso enciende la supernova hasta intensidades superluminosas, explica Smartt.
Los científicos no tiene claro el mecanismo que desencadena la explosión de las superluminosas, pero teoría si que tienen, y las llaman supernovas de pares electrón-positrón, es decir, de materia-antimateria (el positrón es la antipartícula del electrón). La idea es que en estrellas realmente supermasivas (entre 100 y 300 masas solares), sus núcleos llegan a alcanzan temperaturas tan altas que se crean pares electrón-positrón. Entonces el astro se contrae, se desestabiliza y se desencadena una masiva explosión termonuclear de manera que el calor generado en el proceso enciende la supernova hasta intensidades superluminosas, explica Smartt.